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Abstract. Lattice animals provide a discretized model for theθ -transition displayed by
branched polymers in solvent. Exact graph enumeration studies have given some indications
that the phase diagram of such lattice animals may contain two collapsed phases as well as
an extended phase. This has not been confirmed by studies using other means. We use the
exact correspondence between theq → 1 limit of an extended Potts model and lattice animals
to investigate the phase diagram of lattice animals onφ3 random graphs of arbitrary topology
(‘thin’ random graphs). We find that only a two-phase structure exists—there is no sign of a
second collapsed phase.

The random graph model is solved in the thermodynamic limit by saddle-point methods.
We observe that the ratio of these saddle-point equations give precisely the fixed points of the
recursion relations that appear in the solution of the model on the Bethe lattice by Henkel and
Seno (1996Phys. Rev.E 53 3662). This explains the equality of non-universal quantities such
as the critical lines for the Bethe lattice and random graph ensembles.

1. Introduction

Polymers, whether linear or branched, typically display a two-phase structure in solvent
with a θ -transition [1], whose position depends on temperature and solvent composition,
intervening between an extended and a collapsed phase. The case of linear polymers
has proved amenable to various analytical treatments such as conformal field theory and
Coulomb gas methods [2], but branched polymers have been rather more stubborn.

A discretized model of branched polymers is provided by lattice animals, in essence
graphs of connected sites on some lattice. Contact interactions exist between nearest-
neighbour sites that are not directly linked by a bond of the animal and solvent interactions
existing between occupied sites and unoccupied nearest-neighbour sites. All the ingredients
of the continuum polymer in solvent problem are thus present. It is known that ind

dimensions the lattice animal exponents are related to those of the Yang–Lee edge singularity
in d − 2 dimensions which allows the calculation of the bulk entropic exponent for the so-
called strongly embedded lattice animal [3]. It is also known that the model corresponds
exactly to theq → 1 limit of a certain extendedq-state Potts model [4, 5], which has led
to the conjecture that a percolation critical point separates two different branches of the
θ -line [6, 7]. More controversially, exact enumeration techniques have suggested thattwo
collapsed phases might exist [8] whereas transfer matrix investigations have found no sign
of this [7, 9]. Similarly, Monte Carlo simulations of a model of collapsed animals have
given no indications of two collapsed phases [10].

This conflict motivated Henkel and Seno [11] to conduct a two-pronged investigation
of lattice animals using the extended Potts model formalism. They attacked the infinite
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dimensional, mean-field problem by solving the model on a Bethe lattice† and the low-
dimensional problem by using Migdal–Kadanoff [5, 12] recursion relations. In both cases
they found only one collapsed phase, and observed that it was unlikely that the topology of
the phase diagram would change in intermediate dimensions. In this paper we also use the
extended Potts model formalism, this time onφ3 random graphs of arbitrary topology‡, to
show that only one collapsed phase exists for these.

A couple of interesting technical points emerge along the way: first, ratios of the
saddle-point equations in the random graph model are isomorphic to the fixed points of
the recursion relations that solve the model on the Bethe lattice, so the phase structure on
φ3 graphs in the largen limit is identical in all respects to the Bethe lattice; secondly,
the symmetry breaking pattern that emerges at theθ -transition is not that which one might
have naively expected given earlier results for Potts models and percolation on random
graphs. The former phenomenon also occurs in other models on random graphs [13–15]
and is heuristically explained by noting that the loops in the random graph model are
predominantly large in the thermodynamic limit [15–17], so the random graphs look locally
like the corresponding Bethe lattice and one generically obtains mean-field behaviour.

The partition function for lattice animals may be written in several equivalent ways, but
we restrict ourselves to that in equation (1) to facilitate easy comparison with [11]. If an
animal containsn sites,b bonds andk contact interactions we can write

Zanimal=
∑
n

xnZn(y, τ ) =
∑
n,b,k

an,b,kx
nybτ k (1)

where the site, bond and contact fugacities are given byx, y, τ respectively and thea’s give
the number of different animals with the specified numbers of sites, bonds and contacts.
There is an exact correspondence between the lattice animal partition function of equation (1)
and theq → 1 limit of an extendedq-state Potts model [4, 5] with Hamiltonian

H = −J
∑
(i,j)

δσi ,σj − L
∑
(i,j)

δσi ,1δσj ,1−H
∑
i

δσi ,1 (2)

where the(i, j) sums are over nearest-neighbour vertices and the spinsσi take onq values.
The

∑
(i,j) δσi ,1δσj ,1 term is non-standard, in its absence we would have the usual Potts

Hamiltonian (with an external field).
The Potts model parameters are related tox, y andτ in equation (1) by

x = exp(−H − γ (J + L)) y = (exp(J )− 1) exp(J + L) τ = exp(J + L) (3)

whereγ is the coordination number of the lattice or graph on which the animals live, and
the partition functions are related by

Zanimal= lim
q→1

∂

∂q
lnZPotts (4)

where the Potts partition function is

ZPotts=
∑
{σ }

exp(−H). (5)

The idea behind the correspondence is essentially identical to the use of the standard Potts
model Hamiltonian in theq → 1 limit to describe percolation [18], which is based on
Fortuin and Kasteleyn’s [19] cluster transcription of Potts and related models.

† Although it might appear at first sight that contact interactions could not be introduced on the loopless Bethe
lattice it should be remembered that the Potts spins encode the animal state, rather than it being related simply to
the lattice geometry. If one were really placing an animal on the lattice directly, some sort of cactus lattice would
be required to allow such contacts.
‡ We use a rather loose ‘physicists’ notation’ to denote the class of graphs we are interested in: more precisely,
we are discussing three regular, connected, undirected, unlabelled random graphs of arbitrary topology.
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2. Animals on thin graphs—obtaining the solution

Having discussed the lattice animal model in general we now move on to formulate it
on random graphs of arbitrary topology. A particularly economical way of writing down
statistical mechanical models on such random graphs was introduced in [20] where it was
observed that taking theN → 1 limit in the Hermitian matrix models familiar from studies
of two-dimensional (2D) gravity generated random graphs of arbitrary topology, as opposed
to the planar graphs picked out by theN → ∞ limit that is used in two-dimensional
gravity. The random graphs appear as Feynman diagrams in the perturbative expansion
of the partition function. The matrix indices vanish in theN → 1 limit, leaving ‘thin’
graphs rather than the fat, or ribbon, graphs of the matrix model proper. We shall denote
the non-planar, arbitrary topology random graphs as thin graphs and the animals which live
on them as thin animals throughout the rest of the paper for brevity.

In general the partition function of a statistical mechanical model on an ensemble of
thin random graphs with 2m vertices is given by

Zm ×Nm = 1

2π i

∮
dλ

λ2m+1

∫ ∏
i dφi

2π
√

detK
exp(−S) (6)

where the contour integral over the vertex couplingλ picks out the graphs with 2m vertices,
S is an appropriate action,K is the inverse of the quadratic form in this action, and the
φi are the various matter variables in the action. As the number of thin random graphs
increases factorially withm the factorNm gives the number of undecorated (i.e. without
matter) graphs in the class of interest and disentangles this growth from any non-analyticity
due to phase transitions. For theφ3 (three-regular) random graphs we discuss here

Nm =
(

1

6

)2m
(6m− 1)!!

(2m)!!
(7)

which can be obtained by using the simple actionS = ( 1
2)φ

2 − (λ/3)φ3 in equation (6),
expanding the cubic term perturbatively and carrying out the resulting Gaussian integrals.
It is perhaps worth emphasizing that theφi appearing in equation (6) arescalar variables,
so the evaluation of thin graph partition functions is inherently easier than dealing with
the matrix integrals of the planar limit. In the largem, thermodynamic, limit saddle-point
methods may be used to evaluate equation (6). The saddle-point equation forλ may be
trivialised by scaling it out of the action as an overall factor, leaving any critical behaviour
to be revealed by the behaviour of the saddle-point equations for the matter fieldsφi . Phase
transitions are manifested by an exchange of dominant saddle point, either continuously or
discontinuously.

We can now write the action which gives the Boltzmann factors appropriate to the
Hamiltonian of equation (2) for aq-state Potts model on thinφ3 random graphs

S = α

2
ψ2+ β

2

q−1∑
i=1

φ2
i −

q−1∑
i=1

ψφi − δ
∑
i>j

φiφj − ν
3
ψ3−

q−1∑
i=1

1

3
φ3
i (8)

where

α = y

τ
+ q − 1 β = τ(y + (τ − 1)(q − 2))

y

δ = τ(τ − 1)

y
ν = x−1τ−3

(9)

and we have pre-emptively scaled out the cubic vertex couplingλ as it plays no role in the
determination of the phase structure. The inverse of the quadratic form in equation (8) has
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the diagonal terms(τ (y/τ + 1), (y/τ + 1), . . .) = (exp(J + L), exp(J ), exp(J ), . . .) with
all off-diagonal terms 1, which is precisely what is required. We can also see that when
L = 0 we haveα = β = exp(J )+ q − 2, δ = 1, and we recover (up to a trivial rescaling)
the action for the standard Potts model used in [13].

The saddle-point equations for the action in equation (8) may be solved for increasingq

until patience, or algebraic computing power, run out. ‘Generic’ behaviour sets in atq = 4,
as opposed toq = 3 for the standard action withL = 0. One finds a disordered phase where
ψ is distinct and theq−1φis are equal toφ, which we denote as having(1, q−1) symmetry.
There are two patterns of symmetry breaking from this phase to ordered states: in the first
we haveψ , one distinctφi = φ̃ and the otherφ2 = φ3 = · · · = φq−1 equal toφ, which we
denote as(1, 1, q − 2); in the second we findψ , φ1 = φ2 = φ̃ andφ3 = · · · = φq−1 = φ
which we denote by(1, 2, q − 3). We now follow the path used in the analysis of [13]
by writing down effective actions that are sufficient to capture these symmetry breaking
patterns. In effect, most of theq-Potts variables are redundant asq − 2 or q − 3 of them
are equal in the ordered phases andq−1 in the disordered phase. Imposing the appropriate
symmetries we find the effective actions

S(1,1,q−2) = α

2
ψ2+ β

2
φ̃2+ (q − 2)

2
φ2− ψφ̃ − (q − 2)ψφ

−δ
(
φ̃φ(q − 2)+ 1

2
(q − 2)(q − 3)φ2

)
− ν

3
ψ3− 1

3
φ̃3− (q − 2)

3
φ3 (10)

and

S(1,2,q−3) = α

2
ψ2+ βφ̃2+ (q − 3)

2
φ2− 2ψφ̃ − (q − 3)ψφ

−δ
(
φ̃2+ 2φ̃φ(q − 3)+ 1

2
(q − 3)(q − 4)φ2

)
− ν

3
ψ3− 2

3
φ̃3− (q − 3)

3
φ3.

(11)

Solving the saddle-point equations∂S/∂ψ = ∂S/∂φ̃ = ∂S/∂φ = 0 for either effective
action to getψ, φ̃, φ involves only a quadratic equation in the disordered phase, but one
is left with a messy quartic to solve in the ordered phase. A direct attack is not very
illuminating, but we can use the same legerdemain exercised in [11] for Bethe lattice to
simplify the problem greatly. The useful observation made there was that the lattice animal
partition function could be written as

Zanimal∼
∑
n

(x exp(F ))n (12)

whereF was the canonical ensemble (fixedn) free energy. The sum in equation (12) can
be seen to diverge at a critical value ofx, which we denote as̃x, which in turn gives the
critical canonical ensemble free energyF = − ln x̃ of the infinite lattice animal. Therefore,
if we can calculatẽx as a function ofy, τ we obtain the canonical free energy

F = lim
n→∞ n

−1 lnZn(y, τ ) (13)

of the infinite lattice animal as a function of these variables.
To see how this helps, consider the solutions of the saddle-point equations obtained

from equations (10), (11) whenq = 1, which are given by

ψ = xyτ 2 8̃2− 8̃+ xy = 0 82−8+ xy = 0 (14)

for both in the disordered phase, with symmetry(1, q − 1), where8̃ = φ̃/τ , 8 = φ/τ and
where we have not solved the quadratics explicitly for reasons that will become apparent
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below. The ordered phase solutions are obtained from, for equation (10) with breaking
pattern(1, 1, q − 2)

0= 8̃4y2+ 2y[2(1− τ)− y]8̃3+ [4(τ − 1)2− 6y(1− τ)+ y2(1+ xy)]8̃2

−[4(1− τ)2+ xy2(2τ − y)+ 2y(τ − 1)]8̃+ [(τ − 1)2+ τxy2]

8 = 1− 8̃

ψ = −τ
2

y
[y(8̃2− 8̃)− 2(τ − 1)8̃+ (τ − 1)]

(15)

and, for equation (11) with breaking pattern(1, 2, q − 3)

0= 8̃4y2+ 2y[4(τ − 1)− y]8̃3+ [16(τ − 1)2+ 12y(1− τ)+ y2(1+ xy)]8̃2

−[16(1− τ)2− xy2(4τ − y)− 4y(τ − 1)]8̃+ [4(τ − 1)2− 2τxy2]

8 = 1− 8̃

ψ = −τ
2

y
[y(8̃2− 8̃)+ 4(τ − 1)8̃− 2(τ − 1)].

(16)

To avoid the onerous task of solving for̃8 in all of these we now, as advertised, treat
equation (14) and the first of equations (15), (16) as equations forx(y, τ, 8̃), in which
variable they are only linear.

3. Animals on thin graphs—discussion of the solution

If we make the substitutionp = 8̃+ 1
2 to simplify the resulting expressions we find from

equations (14)–(16)

x1,q−1(y, p) = 1− 4p2

4y

x1,1,q−2(y, τ, p) = (1− 4p2)2y2+ 16(τ − 1)(1− 4p2)py + 64p2(τ − 1)2

4y2((1− 4p2)y + 8pτ)

x1,2,q−3(y, τ, p) = (1− 4p2)2y2− 32(τ − 1)(1− 4p2)py + 256p2(τ − 1)2

4y2((1− 4p2)y − 16pτ)

(17)

where we have labelled the solutions by their symmetry breaking pattern. We see here the
first hint of a close parallel with the Bethe lattice solution of [11] since our two ordered
solutions are related by

x1,2,q−3(y, τ, p) = 1

2
x1,1,q−2

(y
2
, τ,−p

)
(18)

which mirrors a similar symmetry in [11]†.
The physical solutions̃x1,q−1(y), x̃1,1,q−2(y, τ ), x̃1,2,q−3(y, τ ) are obtained by maximiz-

ing these expressions with respect top, which plays the role of an order parameter. The
appropriate solution for a given(y, τ ) is then the largest of these. Bearing in mind that we
must have the fugacityx positive to make sense physically and that the natural ranges ofy

and τ arey > 0,τ > 1, we see that the physical ranges forp are 06 p 6 1
2 for x1,1,q−1,

− 1
2 6 p 6 0 for x1,2,q−3 and− 1

2 6 p 6
1
2 for x1,q−1.

At this point it might appear that we have succeeded in showing precisely the reverse of
what was announced in the introduction in that we have foundtwo candidate ordered phases,

† Which does not, however, involve inverting the order parameter.
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which might be identified with thetwo contentious collapsed polymer phases. However,
an extensive numerical investigation throughout the(y, τ ) range reveals that one of the
solutions,x̃1,2,q−3(y, τ ), is always larger than the other,x̃1,1,q−2(y, τ ), for a given(y, τ ) so
it is the former which is always dominant.

For the disordered solution we clearly have a maximum atp = 0

x̃1,q−1(y) = 1

4y
(19)

so the free energy isF = ln(4y) and we also find

x1,1,q−2(y, τ,0) = x1,2,q−3(y, τ,0) = 1

4y
. (20)

We are now in a position to map out the phase structure of thin animals. We have found
two phases, whose free energies are given byF = − ln x̃1,q−1(y) which we can identify
with the extended phase andF = − ln x̃1,2,q−3(y, τ ) which we identify with the (single)
collapsed phase.

The transition line between these two phases may be pinned down by noting that

∂x1,2,q−3(y, τ, p)

∂p
= 0 (21)

if τ = 2. We then observe that

∂2x1,2,q−3(y, 2, 0)

∂p2
= 2

64− y2

y3
(22)

so x̃1,2,q−3(y, 2, p) has a maximum atp = 0 if y > 8, a minimum ify < 8 and a turning
point if y = 8. A glance at figures 1 and 2 where we plotx1,q−1(y, p) andx1,2,q−3(y, 2, p)
for y = 10 andy = 4 respectively clarifies what is going on. In figure 1 we see that
x1,q−1(y, p) andx1,2,q−3(y, 2, p) share a common maximum atp = 0 wheny = 10 (which
is the case for ally > 8), whereas fory = 4 the maximum ofx1,2,q−3(y, 2, p) lies at some
p < 0. This means that we see a continuous transition asτ is varied acrossτ = 2 when
y > 8 between extended animals at smallτ and collapsed animals at largeτ . For y < 8
the position of the critical line in the(y, τ ) plane must be determined numerically and the
transition is first order. The physical solution jumps discontinuously from the maximum
of x1,q−1 at p = 0 to the maximum ofx1,2,q−3 at p < 0. The appropriate equations for
pinpointing the first-order line are thus

x1,2,q−3(y, τ, p) = x1,q−1(y, 0) = 1

4y
∂x1,2,q−3(y, τ, p)

∂p
= 0

∂2x1,2,q−3(y, τ, p)

∂p2
6 0

(23)

which give the conditions for the maximum inx1,2,q−3(y, τ, p) at p < 0 to be equal to the
maximum inx1,q−1(y, p) at p = 0.

A triple point aty = 8, τ = 2 separates the first- and second-order transition lines. All
of these features are indicated in the schematic phase diagram of figure 3. The presence of a
jump across the first-order line is confirmed explicitly by the sample values in figures 4 and
5 where we see that as we cross the line by varyingτ at fixedy = 4 we move fromx1,q−1

dominant in figure 4 to the situation in figure 5 wherex1,2,q−3 is just equal to the maximum
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Figure 1. The two solutions versusp whenτ = 2, y = 10. The upper dotted curve isx1,2,q−3

and the lower full curve isx1,q−1. The maximum of both curves lies atp = 0.

Figure 2. The two solutions versusp when τ = 2, y = 4. Again, the upper dotted curve is
x1,2,q−3 and the lower full curvex1,q−1. The maximum ofx1,2,q−3 now lies away fromp = 0,
signalling a first-order transition.
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Figure 3. The (schematic) phase diagram for thin animals. The full curveτ = 2, y > 8 is
a line of second-order transitions, whereas the broken curve is first order. The triple point is
shown aty = 8, τ = 2 at the meeting point of the two.

Figure 4. The two solutionsbelow the first-order portion of the critical line aty = 4, τ = 1.
x1,q−1 is shown in full,x1,2,q−3 dotted.
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Figure 5. The solutions on the first-order portion of the critical line aty = 4, τ ' 1.8528. . . .
x1,2,q−3 is shown dotted and its maximum atp ' −0.1634. . . has just reached 1/4y. x1,q−1,
shown in full, has the same maximum atp = 0.

of x1,q−1 (1/4y at the origin) for anon-zerop value (' −0.1634. . .) at τ ' 1.8528. . . . At
this pointp jumps discontinuously and we move into the collapsed phase asτ increases.

When moving across the second-order portion of the line, however, the maximum of
x1,2,q−3 is at the origin and we see no jump inp, giving a second-order transition. This
can be seen by referring back to figure 1 and comparing it with figure 6. In figure 6 we are
below the second-order line aty = 10, τ = 1 and the two curves look much like figure 4.
As we move up to the line aty = 10, τ = 2 in figure 1 we can see that the maximum of
x1,2,q−3 now lies at the origin and increasingτ further takes us into the collapsed phase via
a second-order transition.

In closing this section it should be remarked that although the broad features of the
random graph phase diagram appear to be in accordance with 2D models, there is one
notable difference. The triple point separating the first- and second-order portions of the
θ -line is the percolation point in 2D. That isnot the case here—the percolation point in the
random graph model is atL = H = 0 andτ = 2, which in turn impliesy = τ(τ −1) = 2†.
This presumably can be ascribed to the mean-field nature of the model, a comment which
also applies to the Bethe lattice results of [11], whose similarities with the work here we
now move on to discuss.

4. Comparison with Bethe lattice results

Anyone familiar with the results of [11] for Bethe lattice animals may at this point be
experiencing a strong sense of déjà vu. The thin animal phase diagram has proved to be

† Remarkably, the same numerical values as the 2D model.



9414 D A Johnston

Figure 6. The two solutionsbelow the second-order portion of the critical line aty = 10, τ = 1.
x1,q−1, again denoted by a full curve, is dominant.

identical to that on the Bethe lattice, down to non-universal quantities such as the position
of theθ -line and triple point. As we have already noted, even before extracting the physical
solutionsx̃ parallels are apparent since the two ordered solutions on both random graphs
and the Bethe lattice possess a particulary → y/2 symmetry. Our criteria for extracting
the θ -line are also identical to those used on the Bethe lattice, although the equations for
x on the Bethe lattice are quadratic rather than linear, as above. All this clearly begs an
explanation.

Our saddle-point equations forx1,2,q−3 at q = 1, which we have so far not written
explicitly, are given by

ψ2 = xyτ 2ψ − 2xτ 3φ̃ + 2xτ 3φ

φ̃2 = −ψ − 2τ(τ − 1)− τy
y

φ̃ + 2τ(τ − 1)

y
φ

φ2 = −ψ − 2τ(τ − 1)

y
φ̃ + 2τ(τ − 1)+ τy

y
φ.

(24)

At first sight these bear little relation to the fixed points of the recursion relations used in
[11] to obtain the dominant solution to the model on the Bethe lattice.

The method of derivation is certainly completely different. On the Bethe lattice one
considers the behaviour of the central spinσ0 [11], writing

ZPotts=
∑
σ0

exp(Hδσ0,1)
∑
{s}

3∏
j=1

Qn(σ0|s(j)) (25)

wheres(j) is the spin on thej th sub-branch and

Qn(σ0|s(j)) = exp(J δσ0,s1 + Lδσ0,1δs1,1
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+Hδσ0,1) exp

(
J
∑
(i,j)

′
δsi ,sj + L

∑
(i,j)

′
δsi ,1δsj ,1+H

∑
i

′
δsi ,1

)
(26)

and the primed sums are over the sub-branch with first spins1. The solution then follows
by defining

gn(σ0) =
∑
{s}

′
Qn(σ0|s) (27)

where n labels the ‘shell’ of the Bethe lattice, and noting that it satisfies the recursion
relation

gn(σ0) =
q∑

s1=1

exp(J δσ0,s1 + Lδσ0,1δs1,1+Hδs1,1)(gn−1(s1))
2. (28)

Defining

2n = gn(σ0 6= 1, 2)

gn(1)
Zn = gn(2)

gn(1)
(29)

and taking the limitn→ ∞ allows one to write the fixed point of the recursion relations
in equation (28) as

2 = x−1τ−3+ 2Z2+ ( y
τ
− 2)22

x−1τ−2+ 2Z2− 222

Z = x−1τ−3+ ( y
τ
+ 2)Z2− 222

x−1τ−2+ 2Z2− 222

(30)

where2 = limn→∞2n, Z = limn→∞ Zn.
Given the identical phase diagram we have found on random graphs to the Bethe lattice

results of [11] it is clear that the two sets of equations, equations (24), (30), must somehow
be equivalent. This can be made explicit by a simple transformation. Equations (24) may
be symbolically written asφ2 = Aφ, whereφ is the column vector(ψ, φ̃, φ) andφ2 is
(ψ2, φ̃2, φ2). We are at liberty to rewrite these asφ = A−1φ2 asA is invertible in general

ψ = 1

τ 2xy
ψ2+ 2

y
φ̃2− 2

y
φ2 (a)

φ̃ = 1

τ 3xy
ψ2+ y + 2τ

τy
φ̃2− 2

y
φ2 (b)

φ = 1

τ 3xy
ψ2+ 2

y
φ̃2+ y − 2τ

τy
φ2 (c).

(31)

If we now divide(c)/(a) and(b)/(a)

φ

ψ
= x−1τ−3ψ2+ 2φ̃2+ ( y

τ
− 2)φ2

x−1τ−2ψ2+ 2φ̃2− 2φ2

φ̃

ψ
= x−1τ−3ψ2+ ( y

τ
+ 2)φ̃2− 2φ2

x−1τ−2ψ2+ 2φ̃2− 2φ2

(32)

and make the identifications

2 = φ

ψ
Z = φ̃

ψ
(33)

we obtain exactly the two recursion equation fixed points of equation (30).
Although we have two distinct physical systems, closed random graphs of arbitrary

topology whichdo contain loops, and the loopless Bethe lattice the preceding calculation
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shows that the thermodynamic behaviour of lattice animals on both is identical. In a precise
sense the loops do not matter, as the saddle-point equations that govern the random graph
thermodynamic limit are isomorphic to the recursion relations that arise in solving the
loopless Bethe lattice. The identity between the Bethe lattice recursion relations and ratios
of the random graph saddle-point equations also occurs for other systems (standard Ising,
Potts spins etc) [15, 16], where the consequences are the same, namely the random graph
solutions are identical to those on the Bethe lattice.

5. Discussion

The astute reader might remark that the solution of the lattice animal problem on random
graphs presented in this paper does not really provide any further evidence against the
existence of a second collapsed phase, as we have also shown that the solutions to the model
have the same content as the Bethe lattice solution in [11], though this is an interesting result
in itself. One could counter the objection by stating that we have found a different physical
system, and solved it by very different means, in order to arrive at these conclusions.

The thin graph solution also clarifies one lacuna in the Bethe lattice approach. As we
have noted, solving the full set of saddle-point equations∂S/∂ψ = ∂S/∂φi = 0 (i.e. before
going to the effective actions) shows that only one disordered and two ordered phases† are
present for arbitraryq. On the Bethe lattice enough order parameters are introduced by hand
to distinguish the two putative ordered phases, which is then shown to be self-consistent.
The possibility of a more exotic phase diagram is not, however, explicitly excluded. The
random graph saddle-point equations show that this really is enough, as no other patterns
of symmetry breaking are observed for anyq.

The observed symmetry breaking pattern itself on random graphs is unexpected, namely
(1, q − 1)→ (1, 2, q − 3). For the standardq-state Potts model one has(q)→ (1, q − 1),
so the pattern observed for the sub-dominant solution(1, q−1)→ (1, 1, q−2) might have
been a more obvious first guess. We have also remarked that the critical percolation point,
y = τ = 2 on thin graphs, is not equal to the tricritical pointy = 8, τ = 2 that separates
the two portions ofθ -line, in contrast to the 2D model, although the general topology of
the phase diagram is similar.

Although the work presented in this paper is fairly self-contained one obvious
generalisation suggests itself. The action of equation (8) will also serve to represent lattice
animals onplanar random graphs if one takes theψ, φi to beN×N Hermitian matrices and
performs the limitN →∞. TheL = H = 0 case (percolation) has already been solved by
Kazakov [21], which suggest that the animal problem might also be tractable. The interest
in doing this is that it could shed light on a another vexed question for animals—the (lack
of) conformal invariance in the 2D model.

We should also remark that more general graphs, such as those considered in the ground-
breaking work of Whittle [16], can be handled by simply changing the potential term in the
actions discussed here (with a consequent increase in technical complexity). One can, for
instance, impose 3-regularity on average rather than for every vertex, or have a Poissonian
distribution of vertex orders with suitably chosen potential terms.

As a technical point, sidestepping the solution of difficult saddle-point equations by
considering the canonical free energy and solving for the fugacity associated with the
external field is an idea which might also be fruitfully applied to the solution of the
standard Potts (or even Ising) models in an external field on random graphs, where similarly
complicated equations arise.

† One of which is always dominant.
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Baillie C and Johnston D 1996Nucl. Phys. (Proc. Suppl.)B 47 649
Baillie C, Dorey N, Janke W and Johnston D 1996Phys. Lett.B 369 123
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